Paper Reading AI Learner

Evaluating Team Skill Aggregation in Online Competitive Games

2021-06-21 20:17:36
Arman Dehpanah, Muheeb Faizan Ghori, Jonathan Gemmell, Bamshad Mobasher

Abstract

One of the main goals of online competitive games is increasing player engagement by ensuring fair matches. These games use rating systems for creating balanced match-ups. Rating systems leverage statistical estimation to rate players' skills and use skill ratings to predict rank before matching players. Skill ratings of individual players can be aggregated to compute the skill level of a team. While research often aims to improve the accuracy of skill estimation and fairness of match-ups, less attention has been given to how the skill level of a team is calculated from the skill level of its members. In this paper, we propose two new aggregation methods and compare them with a standard approach extensively used in the research literature. We present an exhaustive analysis of the impact of these methods on the predictive performance of rating systems. We perform our experiments using three popular rating systems, Elo, Glicko, and TrueSkill, on three real-world datasets including over 100,000 battle royale and head-to-head matches. Our evaluations show the superiority of the MAX method over the other two methods in the majority of the tested cases, implying that the overall performance of a team is best determined by the performance of its most skilled member. The results of this study highlight the necessity of devising more elaborated methods for calculating a team's performance -- methods covering different aspects of players' behavior such as skills, strategy, or goals.

Abstract (translated)

URL

https://arxiv.org/abs/2106.11397

PDF

https://arxiv.org/pdf/2106.11397.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot