Paper Reading AI Learner

SeqNetVLAD vs PointNetVLAD: Image Sequence vs 3D Point Clouds for Day-Night Place Recognition

2021-06-22 02:05:32
Sourav Garg, Michael Milford

Abstract

Place Recognition is a crucial capability for mobile robot localization and navigation. Image-based or Visual Place Recognition (VPR) is a challenging problem as scene appearance and camera viewpoint can change significantly when places are revisited. Recent VPR methods based on ``sequential representations'' have shown promising results as compared to traditional sequence score aggregation or single image based techniques. In parallel to these endeavors, 3D point clouds based place recognition is also being explored following the advances in deep learning based point cloud processing. However, a key question remains: is an explicit 3D structure based place representation always superior to an implicit ``spatial'' representation based on sequence of RGB images which can inherently learn scene structure. In this extended abstract, we attempt to compare these two types of methods by considering a similar ``metric span'' to represent places. We compare a 3D point cloud based method (PointNetVLAD) with image sequence based methods (SeqNet and others) and showcase that image sequence based techniques approach, and can even surpass, the performance achieved by point cloud based methods for a given metric span. These performance variations can be attributed to differences in data richness of input sensors as well as data accumulation strategies for a mobile robot. While a perfect apple-to-apple comparison may not be feasible for these two different modalities, the presented comparison takes a step in the direction of answering deeper questions regarding spatial representations, relevant to several applications like Autonomous Driving and Augmented/Virtual Reality. Source code available publicly this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2106.11481

PDF

https://arxiv.org/pdf/2106.11481.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot