Paper Reading AI Learner

P2T: Pyramid Pooling Transformer for Scene Understanding

2021-06-22 18:28:52
Yu-Huan Wu, Yun Liu, Xin Zhan, Ming-Ming Cheng

Abstract

This paper jointly resolves two problems in vision transformer: i) the computation of Multi-Head Self-Attention (MHSA) has high computational/space complexity; ii) recent vision transformer networks are overly tuned for image classification, ignoring the difference between image classification (simple scenarios, more similar to NLP) and downstream scene understanding tasks (complicated scenarios, rich structural and contextual information). To this end, we note that pyramid pooling has been demonstrated to be effective in various vision tasks owing to its powerful context abstraction, and its natural property of spatial invariance is suitable to address the loss of structural information (problem ii)). Hence, we propose to adapt pyramid pooling to MHSA for alleviating its high requirement on computational resources (problem i)). In this way, this pooling-based MHSA can well address the above two problems and is thus flexible and powerful for downstream scene understanding tasks. Plugged with our pooling-based MHSA, we build a downstream-task-oriented transformer network, dubbed Pyramid Pooling Transformer (P2T). Extensive experiments demonstrate that, when applied P2T as the backbone network, it shows substantial superiority in various downstream scene understanding tasks such as semantic segmentation, object detection, instance segmentation, and visual saliency detection, compared to previous CNN- and transformer-based networks. The code will be released at this https URL. Note that this technical report will keep updating.

Abstract (translated)

URL

https://arxiv.org/abs/2106.12011

PDF

https://arxiv.org/pdf/2106.12011.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot