Paper Reading AI Learner

Human Activity Recognition using Continuous Wavelet Transform and Convolutional Neural Networks

2021-06-23 21:49:17
Anna Nedorubova, Alena Kadyrova, Aleksey Khlyupin

Abstract

Quite a few people in the world have to stay under permanent surveillance for health reasons; they include diabetic people or people with some other chronic conditions, the elderly and the disabled.These groups may face heightened risk of having life-threatening falls or of being struck by a syncope. Due to limited availability of resources a substantial part of people at risk can not receive necessary monitoring and thus are exposed to excessive danger. Nowadays, this problem is usually solved via applying Human Activity Recognition (HAR) methods. HAR is a perspective and fast-paced Data Science field, which has a wide range of application areas such as healthcare, sport, security etc. However, the currently techniques of recognition are markedly lacking in accuracy, hence, the present paper suggests a highly accurate method for human activity classification. Wepropose a new workflow to address the HAR problem and evaluate it on the UniMiB SHAR dataset, which consists of the accelerometer signals. The model we suggest is based on continuous wavelet transform (CWT) and convolutional neural networks (CNNs). Wavelet transform localizes signal features both in time and frequency domains and after that a CNN extracts these features and recognizes activity. It is also worth noting that CWT converts 1D accelerometer signal into 2D images and thus enables to obtain better results as 2D networks have a significantly higher predictive capacity. In the course of the work we build a convolutional neural network and vary such model parameters as number of spatial axes, number of layers, number of neurons in each layer, image size, type of mother wavelet, the order of zero moment of mother wavelet etc. Besides, we also apply models with residual blocks which resulted in significantly higher metric values. Finally, we succeed to reach 99.26 % accuracy and it is a worthy performance for this problem.

Abstract (translated)

URL

https://arxiv.org/abs/2106.12666

PDF

https://arxiv.org/pdf/2106.12666.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot