Paper Reading AI Learner

Human-in-the-loop model explanation via verbatim boundary identification in generated neighborhoods

2021-06-24 15:24:30
Xianlong Zeng, Fanghao Song, Zhongen Li, Krerkkiat Chusap, Chang Liu

Abstract

The black-box nature of machine learning models limits their use in case-critical applications, raising faithful and ethical concerns that lead to trust crises. One possible way to mitigate this issue is to understand how a (mispredicted) decision is carved out from the decision boundary. This paper presents a human-in-the-loop approach to explain machine learning models using verbatim neighborhood manifestation. Contrary to most of the current eXplainable Artificial Intelligence (XAI) systems, which provide hit-or-miss approximate explanations, our approach generates the local decision boundary of the given instance and enables human intelligence to conclude the model behavior. Our method can be divided into three stages: 1) a neighborhood generation stage, which generates instances based on the given sample; 2) a classification stage, which yields classifications on the generated instances to carve out the local decision boundary and delineate the model behavior; and 3) a human-in-the-loop stage, which involves human to refine and explore the neighborhood of interest. In the generation stage, a generative model is used to generate the plausible synthetic neighbors around the given instance. After the classification stage, the classified neighbor instances provide a multifaceted understanding of the model behavior. Three intervention points are provided in the human-in-the-loop stage, enabling humans to leverage their own intelligence to interpret the model behavior. Several experiments on two datasets are conducted, and the experimental results demonstrate the potential of our proposed approach for boosting human understanding of the complex machine learning model.

Abstract (translated)

URL

https://arxiv.org/abs/2106.13093

PDF

https://arxiv.org/pdf/2106.13093.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot