Paper Reading AI Learner

High Performance Hyperspectral Image Classification using Graphics Processing Units

2021-05-30 09:26:03
Mahmoud Hossam

Abstract

Real-time remote sensing applications like search and rescue missions, military target detection, environmental monitoring, hazard prevention and other time-critical applications require onboard real time processing capabilities or autonomous decision making. Some unmanned remote systems like satellites are physically remote from their operators, and all control of the spacecraft and data returned by the spacecraft must be transmitted over a wireless radio link. This link may not be available for extended periods when the satellite is out of line of sight of its ground station. Therefore, lightweight, small size and low power consumption hardware is essential for onboard real time processing systems. With increasing dimensionality, size and resolution of recent hyperspectral imaging sensors, additional challenges are posed upon remote sensing processing systems and more capable computing architectures are needed. Graphical Processing Units (GPUs) emerged as promising architecture for light weight high performance computing that can address these computational requirements for onboard systems. The goal of this study is to build high performance methods for onboard hyperspectral analysis. We propose accelerated methods for the well-known recursive hierarchical segmentation (RHSEG) clustering method, using GPUs, hybrid multicore CPU with a GPU and hybrid multi-core CPU/GPU clusters. RHSEG is a method developed by the National Aeronautics and Space Administration (NASA), which is designed to provide rich classification information with several output levels. The achieved speedups by parallel solutions compared to CPU sequential implementations are 21x for parallel single GPU and 240x for hybrid multi-node computer clusters with 16 computing nodes. The energy consumption is reduced to 74% using a single GPU compared to the equivalent parallel CPU cluster.

Abstract (translated)

URL

https://arxiv.org/abs/2106.12942

PDF

https://arxiv.org/pdf/2106.12942.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot