Paper Reading AI Learner

OKGIT: Open Knowledge Graph Link Prediction with Implicit Types

2021-06-24 07:48:05
Chandrahas, Partha Pratim Talukdar


Open Knowledge Graphs (OpenKG) refer to a set of (head noun phrase, relation phrase, tail noun phrase) triples such as (tesla, return to, new york) extracted from a corpus using OpenIE tools. While OpenKGs are easy to bootstrap for a domain, they are very sparse and far from being directly usable in an end task. Therefore, the task of predicting new facts, i.e., link prediction, becomes an important step while using these graphs in downstream tasks such as text comprehension, question answering, and web search query recommendation. Learning embeddings for OpenKGs is one approach for link prediction that has received some attention lately. However, on careful examination, we found that current OpenKG link prediction algorithms often predict noun phrases (NPs) with incompatible types for given noun and relation phrases. We address this problem in this work and propose OKGIT that improves OpenKG link prediction using novel type compatibility score and type regularization. With extensive experiments on multiple datasets, we show that the proposed method achieves state-of-the-art performance while producing type compatible NPs in the link prediction task.

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot