Paper Reading AI Learner

Learning a Robust Society of Tracking Parts using Co-occurrence Constraints

2018-11-08 09:40:46
Elena Burceanu, Marius Leordeanu

Abstract

Object tracking is an essential problem in computer vision that has been researched for several decades. One of the main challenges in tracking is to adapt to object appearance changes over time and avoiding drifting to background clutter. We address this challenge by proposing a deep neural network composed of different parts, which functions as a society of tracking parts. They work in conjunction according to a certain policy and learn from each other in a robust manner, using co-occurrence constraints that ensure robust inference and learning. From a structural point of view, our network is composed of two main pathways. One pathway is more conservative. It carefully monitors a large set of simple tracker parts learned as linear filters over deep feature activation maps. It assigns the parts different roles. It promotes the reliable ones and removes the inconsistent ones. We learn these filters simultaneously in an efficient way, with a single closed-form formulation, for which we propose novel theoretical properties. The second pathway is more progressive. It is learned completely online and thus it is able to better model object appearance changes. In order to adapt in a robust manner, it is learned only on highly confident frames, which are decided using co-occurrences with the first pathway. Thus, our system has the full benefit of two main approaches in tracking. The larger set of simpler filter parts offers robustness, while the full deep network learned online provides adaptability to change. As shown in the experimental section, our approach achieves state of the art performance on the challenging VOT17 benchmark, outperforming the published methods both on the general EAO metric and in the number of fails, by a significant margin.

Abstract (translated)

URL

https://arxiv.org/abs/1804.01771

PDF

https://arxiv.org/pdf/1804.01771.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot