Paper Reading AI Learner

Evaluating the Complementarity of Taxonomic Relation Extraction Methods Across Different Languages

2018-11-08 03:19:59
Roger Granada, Renata Vieira, Cassia Trojahn, Nathalie Aussenac-Gilles

Abstract

Modern information systems are changing the idea of "data processing" to the idea of "concept processing", meaning that instead of processing words, such systems process semantic concepts which carry meaning and share contexts with other concepts. Ontology is commonly used as a structure that captures the knowledge about a certain area via providing concepts and relations between them. Traditionally, concept hierarchies have been built manually by knowledge engineers or domain experts. However, the manual construction of a concept hierarchy suffers from several limitations such as its coverage and the enormous costs of its extension and maintenance. Ontology learning, usually referred to the (semi-)automatic support in ontology development, is usually divided into steps, going from concepts identification, passing through hierarchy and non-hierarchy relations detection and, seldom, axiom extraction. It is reasonable to say that among these steps the current frontier is in the establishment of concept hierarchies, since this is the backbone of ontologies and, therefore, a good concept hierarchy is already a valuable resource for many ontology applications. The automatic construction of concept hierarchies from texts is a complex task and much work have been proposing approaches to better extract relations between concepts. These different proposals have never been contrasted against each other on the same set of data and across different languages. Such comparison is important to see whether they are complementary or incremental. Also, we can see whether they present different tendencies towards recall and precision. This paper evaluates these different methods on the basis of hierarchy metrics such as density and depth, and evaluation metrics such as Recall and Precision. Results shed light over the comprehensive set of methods according to the literature in the area.

Abstract (translated)

URL

https://arxiv.org/abs/1811.03245

PDF

https://arxiv.org/pdf/1811.03245.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot