Paper Reading AI Learner

Word2Box: Learning Word Representation Using Box Embeddings

2021-06-28 01:17:11
Shib Sankar Dasgupta, Michael Boratko, Shriya Atmakuri, Xiang Lorraine Li, Dhruvesh Patel, Andrew McCallum

Abstract

Learning vector representations for words is one of the most fundamental topics in NLP, capable of capturing syntactic and semantic relationships useful in a variety of downstream NLP tasks. Vector representations can be limiting, however, in that typical scoring such as dot product similarity intertwines position and magnitude of the vector in space. Exciting innovations in the space of representation learning have proposed alternative fundamental representations, such as distributions, hyperbolic vectors, or regions. Our model, Word2Box, takes a region-based approach to the problem of word representation, representing words as $n$-dimensional rectangles. These representations encode position and breadth independently and provide additional geometric operations such as intersection and containment which allow them to model co-occurrence patterns vectors struggle with. We demonstrate improved performance on various word similarity tasks, particularly on less common words, and perform a qualitative analysis exploring the additional unique expressivity provided by Word2Box.

Abstract (translated)

URL

https://arxiv.org/abs/2106.14361

PDF

https://arxiv.org/pdf/2106.14361


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot