Paper Reading AI Learner

Exploring Temporal Context and Human Movement Dynamics for Online Action Detection in Videos

2021-06-26 08:34:19
Vasiliki I. Vasileiou, Nikolaos Kardaris, Petros Maragos

Abstract

Nowadays, the interaction between humans and robots is constantly expanding, requiring more and more human motion recognition applications to operate in real time. However, most works on temporal action detection and recognition perform these tasks in offline manner, i.e. temporally segmented videos are classified as a whole. In this paper, based on the recently proposed framework of Temporal Recurrent Networks, we explore how temporal context and human movement dynamics can be effectively employed for online action detection. Our approach uses various state-of-the-art architectures and appropriately combines the extracted features in order to improve action detection. We evaluate our method on a challenging but widely used dataset for temporal action localization, THUMOS'14. Our experiments show significant improvement over the baseline method, achieving state-of-the art results on THUMOS'14.

Abstract (translated)

URL

https://arxiv.org/abs/2106.13967

PDF

https://arxiv.org/pdf/2106.13967


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot