Paper Reading AI Learner

MTrans: Multi-Modal Transformer for Accelerated MR Imaging

2021-06-27 15:01:30
Chun-Mei Feng, Yunlu Yan, Geng Chen, Huazhu Fu, Yong Xu, Ling Shao

Abstract

Accelerating multi-modal magnetic resonance (MR) imaging is a new and effective solution for fast MR imaging, providing superior performance in restoring the target modality from its undersampled counterpart with guidance from an auxiliary modality. However, existing works simply introduce the auxiliary modality as prior information, lacking in-depth investigations on the potential mechanisms for fusing two modalities. Further, they usually rely on the convolutional neural networks (CNNs), which focus on local information and prevent them from fully capturing the long-distance dependencies of global knowledge. To this end, we propose a multi-modal transformer (MTrans), which is capable of transferring multi-scale features from the target modality to the auxiliary modality, for accelerated MR imaging. By restructuring the transformer architecture, our MTrans gains a powerful ability to capture deep multi-modal information. More specifically, the target modality and the auxiliary modality are first split into two branches and then fused using a multi-modal transformer module. This module is based on an improved multi-head attention mechanism, named the cross attention module, which absorbs features from the auxiliary modality that contribute to the target modality. Our framework provides two appealing benefits: (i) MTrans is the first attempt at using improved transformers for multi-modal MR imaging, affording more global information compared with CNN-based methods. (ii) A new cross attention module is proposed to exploit the useful information in each branch at different scales. It affords both distinct structural information and subtle pixel-level information, which supplement the target modality effectively.

Abstract (translated)

URL

https://arxiv.org/abs/2106.14248

PDF

https://arxiv.org/pdf/2106.14248.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot