Paper Reading AI Learner

SDOF-Tracker: Fast and Accurate Multiple Human Tracking by Skipped-Detection and Optical-Flow

2021-06-27 15:35:35
Hitoshi Nishimura, Satoshi Komorita, Yasutomo Kawanishi, Hiroshi Murase

Abstract

Multiple human tracking is a fundamental problem for scene understanding. Although both accuracy and speed are required in real-world applications, recent tracking methods based on deep learning have focused on accuracy and require substantial running time. This study aims to improve running speed by performing human detection at a certain frame interval because it accounts for most of the running time. The question is how to maintain accuracy while skipping human detection. In this paper, we propose a method that complements the detection results with optical flow, based on the fact that someone's appearance does not change much between adjacent frames. To maintain the tracking accuracy, we introduce robust interest point selection within human regions and a tracking termination metric calculated by the distribution of the interest points. On the MOT20 dataset in the MOTChallenge, the proposed SDOF-Tracker achieved the best performance in terms of the total running speed while maintaining the MOTA metric. Our code is available at https://anonymous.4open.science/r/sdof-tracker-75AE.

Abstract (translated)

URL

https://arxiv.org/abs/2106.14259

PDF

https://arxiv.org/pdf/2106.14259.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot