Paper Reading AI Learner

Expert Q-learning: Deep Q-learning With State Values From Expert Examples

2021-06-28 12:41:45
Li Meng, Anis Yazidi, Morten Goodwin, Paal Engelstad

Abstract

We propose a novel algorithm named Expert Q-learning. Expert Q-learning was inspired by Dueling Q-learning and aimed at incorporating the ideas from semi-supervised learning into reinforcement learning through splitting Q-values into state values and action advantages. Different from Generative Adversarial Imitation Learning and Deep Q-Learning from Demonstrations, the offline expert we have used only predicts the value of a state from {-1, 0, 1}, indicating whether this is a bad, neutral or good state. An expert network is designed in addition to the Q-network and updated each time following the regular offline minibatch update whenever the expert example buffer is not empty. Our algorithm also keeps asynchronous copies of the Q-network and expert network, predicting the target values using the same manner as of Double Q-learning. We compared on the game of Othello our algorithm with the state-of-the-art Q-learning algorithm, which was a combination of Double Q-learning and Dueling Q-learning. The results showed that Expert Q-learning was indeed useful and more resistant to the overestimation bias of Q-learning. The baseline Q-learning algorithm exhibited unstable and suboptimal behavior, especially when playing against a stochastic player, whereas Expert Q-learning demonstrated more robust performance with higher scores. Expert Q-learning without using examples has also gained better results than the baseline algorithm when trained and tested against a fixed player. On the other hand, Expert Q-learning without examples cannot win against the baseline Q-learning algorithm in direct game competitions despite the fact that it has also shown the strength of reducing the overestimation bias.

Abstract (translated)

URL

https://arxiv.org/abs/2106.14642

PDF

https://arxiv.org/pdf/2106.14642.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot