Paper Reading AI Learner

Enhancing the Analysis of Software Failures in Cloud Computing Systems with Deep Learning

2021-06-29 09:00:41
Domenico Cotroneo, Luigi De Simone, Pietro Liguori, Roberto Natella

Abstract

Identifying the failure modes of cloud computing systems is a difficult and time-consuming task, due to the growing complexity of such systems, and the large volume and noisiness of failure data. This paper presents a novel approach for analyzing failure data from cloud systems, in order to relieve human analysts from manually fine-tuning the data for feature engineering. The approach leverages Deep Embedded Clustering (DEC), a family of unsupervised clustering algorithms based on deep learning, which uses an autoencoder to optimize data dimensionality and inter-cluster variance. We applied the approach in the context of the OpenStack cloud computing platform, both on the raw failure data and in combination with an anomaly detection pre-processing algorithm. The results show that the performance of the proposed approach, in terms of purity of clusters, is comparable to, or in some cases even better than manually fine-tuned clustering, thus avoiding the need for deep domain knowledge and reducing the effort to perform the analysis. In all cases, the proposed approach provides better performance than unsupervised clustering when no feature engineering is applied to the data. Moreover, the distribution of failure modes from the proposed approach is closer to the actual frequency of the failure modes.

Abstract (translated)

URL

https://arxiv.org/abs/2106.15182

PDF

https://arxiv.org/pdf/2106.15182.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot