Paper Reading AI Learner

Predicting Depth from Semantic Segmentation using Game Engine Dataset

2021-06-12 10:15:40
Mohammad Amin Kashi

Abstract

Depth perception is fundamental for robots to understand the surrounding environment. As the view of cognitive neuroscience, visual depth perception methods are divided into three categories, namely binocular, active, and pictorial. The first two categories have been studied for decades in detail. However, research for the exploration of the third category is still in its infancy and has got momentum by the advent of deep learning methods in recent years. In cognitive neuroscience, it is known that pictorial depth perception mechanisms are dependent on the perception of seen objects. Inspired by this fact, in this thesis, we investigated the relation of perception of objects and depth estimation convolutional neural networks. For this purpose, we developed new network structures based on a simple depth estimation network that only used a single image at its input. Our proposed structures use both an image and a semantic label of the image as their input. We used semantic labels as the output of object perception. The obtained results of performance comparison between the developed network and original network showed that our novel structures can improve the performance of depth estimation by 52\% of relative error of distance in the examined cases. Most of the experimental studies were carried out on synthetic datasets that were generated by game engines to isolate the performance comparison from the effect of inaccurate depth and semantic labels of non-synthetic datasets. It is shown that particular synthetic datasets may be used for training of depth networks in cases that an appropriate dataset is not available. Furthermore, we showed that in these cases, usage of semantic labels improves the robustness of the network against domain shift from synthetic training data to non-synthetic test data.

Abstract (translated)

URL

https://arxiv.org/abs/2106.15257

PDF

https://arxiv.org/pdf/2106.15257.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot