Paper Reading AI Learner

Xihe: A 3D Vision-based Lighting Estimation Framework for Mobile Augmented Reality

2021-05-30 13:48:29
Yiqin Zhao, Tian Guo

Abstract

Omnidirectional lighting provides the foundation for achieving spatially-variant photorealistic 3D rendering, a desirable property for mobile augmented reality applications. However, in practice, estimating omnidirectional lighting can be challenging due to limitations such as partial panoramas of the rendering positions, and the inherent environment lighting and mobile user dynamics. A new opportunity arises recently with the advancements in mobile 3D vision, including built-in high-accuracy depth sensors and deep learning-powered algorithms, which provide the means to better sense and understand the physical surroundings. Centering the key idea of 3D vision, in this work, we design an edge-assisted framework called Xihe to provide mobile AR applications the ability to obtain accurate omnidirectional lighting estimation in real time. Specifically, we develop a novel sampling technique that efficiently compresses the raw point cloud input generated at the mobile device. This technique is derived based on our empirical analysis of a recent 3D indoor dataset and plays a key role in our 3D vision-based lighting estimator pipeline design. To achieve the real-time goal, we develop a tailored GPU pipeline for on-device point cloud processing and use an encoding technique that reduces network transmitted bytes. Finally, we present an adaptive triggering strategy that allows Xihe to skip unnecessary lighting estimations and a practical way to provide temporal coherent rendering integration with the mobile AR ecosystem. We evaluate both the lighting estimation accuracy and time of Xihe using a reference mobile application developed with Xihe's APIs. Our results show that Xihe takes as fast as 20.67ms per lighting estimation and achieves 9.4% better estimation accuracy than a state-of-the-art neural network.

Abstract (translated)

URL

https://arxiv.org/abs/2106.15280

PDF

https://arxiv.org/pdf/2106.15280.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot