Paper Reading AI Learner

Differential Privacy for Credit Risk Model

2021-06-24 09:58:49
Tabish Maniar, Alekhya Akkinepally, Anantha Sharma

Abstract

The use of machine learning algorithms to model user behavior and drive business decisions has become increasingly commonplace, specifically providing intelligent recommendations to automated decision making. This has led to an increase in the use of customers personal data to analyze customer behavior and predict their interests in a companys products. Increased use of this customer personal data can lead to better models but also to the potential of customer data being leaked, reverse engineered, and mishandled. In this paper, we assess differential privacy as a solution to address these privacy problems by building privacy protections into the data engineering and model training stages of predictive model development. Our interest is a pragmatic implementation in an operational environment, which necessitates a general purpose differentially private modeling framework, and we evaluate one such tool from LeapYear as applied to the Credit Risk modeling domain. Credit Risk Model is a major modeling methodology in banking and finance where user data is analyzed to determine the total Expected Loss to the bank. We examine the application of differential privacy on the credit risk model and evaluate the performance of a Differentially Private Model with a Non Differentially Private Model. Credit Risk Model is a major modeling methodology in banking and finance where users data is analyzed to determine the total Expected Loss to the bank. In this paper, we explore the application of differential privacy on the credit risk model and evaluate the performance of a Non Differentially Private Model with Differentially Private Model.

Abstract (translated)

URL

https://arxiv.org/abs/2106.15343

PDF

https://arxiv.org/pdf/2106.15343.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot