Paper Reading AI Learner

Applications of the Free Energy Principle to Machine Learning and Neuroscience

2021-06-30 22:53:03
Beren Millidge

Abstract

In this PhD thesis, we explore and apply methods inspired by the free energy principle to two important areas in machine learning and neuroscience. The free energy principle is a general mathematical theory of the necessary information-theoretic behaviours of systems that maintain a separation from their environment. A core postulate of the theory is that complex systems can be seen as performing variational Bayesian inference and minimizing an information-theoretic quantity called the variational free energy. The thesis is structured into three independent sections. Firstly, we focus on predictive coding, a neurobiologically plausible process theory derived from the free energy principle which argues that the primary function of the brain is to minimize prediction errors, showing how predictive coding can be scaled up and extended to be more biologically plausible, and elucidating its close links with other methods such as Kalman Filtering. Secondly, we study active inference, a neurobiologically grounded account of action through variational message passing, and investigate how these methods can be scaled up to match the performance of deep reinforcement learning methods. We additionally provide a detailed mathematical understanding of the nature and origin of the information-theoretic objectives that underlie exploratory behaviour. Finally, we investigate biologically plausible methods of credit assignment in the brain. We first demonstrate a close link between predictive coding and the backpropagation of error algorithm. We go on to propose novel and simpler algorithms which allow for backprop to be implemented in purely local, biologically plausible computations.

Abstract (translated)

URL

https://arxiv.org/abs/2107.00140

PDF

https://arxiv.org/pdf/2107.00140.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot