Paper Reading AI Learner

Circuit Complexity of Visual Search

2021-07-01 05:37:53
Kei Uchizawa, Haruki Abe

Abstract

We study computational hardness of feature and conjunction search through the lens of circuit complexity. Let $x = (x_1, ... , x_n)$ (resp., $y = (y_1, ... , y_n)$) be Boolean variables each of which takes the value one if and only if a neuron at place $i$ detects a feature (resp., another feature). We then simply formulate the feature and conjunction search as Boolean functions ${\rm FTR}_n(x) = \bigvee_{i=1}^n x_i$ and ${\rm CONJ}_n(x, y) = \bigvee_{i=1}^n x_i \wedge y_i$, respectively. We employ a threshold circuit or a discretized circuit (such as a sigmoid circuit or a ReLU circuit with discretization) as our models of neural networks, and consider the following four computational resources: [i] the number of neurons (size), [ii] the number of levels (depth), [iii] the number of active neurons outputting non-zero values (energy), and [iv] synaptic weight resolution (weight). We first prove that any threshold circuit $C$ of size $s$, depth $d$, energy $e$ and weight $w$ satisfies $\log rk(M_C) \le ed (\log s + \log w + \log n)$, where $rk(M_C)$ is the rank of the communication matrix $M_C$ of a $2n$-variable Boolean function that $C$ computes. Since ${\rm CONJ}_n$ has rank $2^n$, we have $n \le ed (\log s + \log w + \log n)$. Thus, an exponential lower bound on the size of even sublinear-depth threshold circuits exists if the energy and weight are sufficiently small. Since ${\rm FTR}_n$ is computable independently of $n$, our result suggests that computational capacity for the feature and conjunction search are different. We also show that the inequality is tight up to a constant factor if $ed = o(n/ \log n)$. We next show that a similar inequality holds for any discretized circuit. Thus, if we regard the number of gates outputting non-zero values as a measure for sparse activity, our results suggest that larger depth helps neural networks to acquire sparse activity.

Abstract (translated)

URL

https://arxiv.org/abs/2107.00223

PDF

https://arxiv.org/pdf/2107.00223.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot