Paper Reading AI Learner

Adaptive Hyperparameter Tuning for Black-box LiDAR Odometry

2021-07-01 07:58:31
Kenji Koide, Masashi Yokozuka, Shuji Oishi, Atsuhiko Banno

Abstract

This study proposes an adaptive data-driven hyperparameter tuning framework for black-box 3D LiDAR odometry algorithms. The proposed framework comprises offline parameter-error function modeling and online adaptive parameter selection. In the offline step, we run the odometry estimation algorithm for tuning with different parameters and environments and evaluate the accuracy of the estimated trajectories to build a surrogate function that predicts the trajectory estimation error for the given parameters and environments. Subsequently, we select the parameter set that is expected to result in good accuracy in the given environment based on trajectory error prediction with the surrogate function. The proposed framework does not require detailed information on the inner working of the algorithm to be tuned, and improves its accuracy by adaptively optimizing the parameter set. We first demonstrate the role of the proposed framework in improving the accuracy of odometry estimation across different environments with a simulation-based toy example. Further, an evaluation on the public dataset KITTI shows that the proposed framework can improve the accuracy of several odometry estimation algorithms in practical situations.

Abstract (translated)

URL

https://arxiv.org/abs/2107.00275

PDF

https://arxiv.org/pdf/2107.00275.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot