Paper Reading AI Learner

4C: A Computation, Communication, and Control Co-Design Framework for CAVs

2021-07-02 15:36:50
Liangkai Liu, Shaoshan Liu, Weisong Shi

Abstract

Connected and autonomous vehicles (CAVs) are promising due to their potential safety and efficiency benefits and have attracted massive investment and interest from government agencies, industry, and academia. With more computing and communication resources are available, both vehicles and edge servers are equipped with a set of camera-based vision sensors, also known as Visual IoT (V-IoT) techniques, for sensing and perception. Tremendous efforts have been made for achieving programmable communication, computation, and control. However, they are conducted mainly in the silo mode, limiting the responsiveness and efficiency of handling challenging scenarios in the real world. To improve the end-to-end performance, we envision that future CAVs require the co-design of communication, computation, and control. This paper presents our vision of the end-to-end design principle for CAVs, called 4C, which extends the V-IoT system by providing a unified communication, computation, and control co-design framework. With programmable communications, fine-grained heterogeneous computation, and efficient vehicle controls in 4C, CAVs can handle critical scenarios and achieve energy-efficient autonomous driving. Finally, we present several challenges to achieving the vision of the 4C framework.

Abstract (translated)

URL

https://arxiv.org/abs/2107.01142

PDF

https://arxiv.org/pdf/2107.01142.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot