Paper Reading AI Learner

Isotonic Data Augmentation for Knowledge Distillation

2021-07-03 11:34:44
Wanyun Cui, Sen Yan

Abstract

Knowledge distillation uses both real hard labels and soft labels predicted by teacher models as supervision. Intuitively, we expect the soft labels and hard labels to be concordant w.r.t. their orders of probabilities. However, we found {\it critical order violations} between hard labels and soft labels in augmented samples. For example, for an augmented sample $x=0.7*panda+0.3*cat$, we expect the order of meaningful soft labels to be $P_\text{soft}(panda|x)>P_\text{soft}(cat|x)>P_\text{soft}(other|x)$. But real soft labels usually violate the order, e.g. $P_\text{soft}(tiger|x)>P_\text{soft}(panda|x)>P_\text{soft}(cat|x)$. We attribute this to the unsatisfactory generalization ability of the teacher, which leads to the prediction error of augmented samples. Empirically, we found the violations are common and injure the knowledge this http URL this paper, we introduce order restrictions to data augmentation for knowledge distillation, which is denoted as isotonic data augmentation (IDA). We use isotonic regression (IR) -- a classic technique from statistics -- to eliminate the order violations. We show that IDA can be modeled as a tree-structured IR problem. We thereby adapt the classical IRT-BIN algorithm for optimal solutions with $O(c \log c)$ time complexity, where $c$ is the number of labels. In order to further reduce the time complexity, we also \cwy{propose} a GPU-friendly approximation with linear time complexity. We have verified on variant datasets and data augmentation techniques that our proposed IDA algorithms effectively increases the accuracy of knowledge distillation by eliminating the rank violations.

Abstract (translated)

URL

https://arxiv.org/abs/2107.01412

PDF

https://arxiv.org/pdf/2107.01412.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot