Paper Reading AI Learner

What Makes for Hierarchical Vision Transformer?

2021-07-05 17:59:35
Yuxin Fang, Xinggang Wang, Rui Wu, Jianwei Niu, Wenyu Liu

Abstract

Recent studies show that hierarchical Vision Transformer with interleaved non-overlapped intra window self-attention \& shifted window self-attention is able to achieve state-of-the-art performance in various visual recognition tasks and challenges CNN's dense sliding window paradigm. Most follow-up works try to replace shifted window operation with other kinds of cross window communication while treating self-attention as the de-facto standard for intra window information aggregation. In this short preprint, we question whether self-attention is the only choice for hierarchical Vision Transformer to attain strong performance, and what makes for hierarchical Vision Transformer? We replace self-attention layers in Swin Transformer and Shuffle Transformer with simple linear mapping and keep other components unchanged. The resulting architecture with 25.4M parameters and 4.2G FLOPs achieves 80.5\% Top-1 accuracy, compared to 81.3\% for Swin Transformer with 28.3M parameters and 4.5G FLOPs. We also experiment with other alternatives to self-attention for context aggregation inside each non-overlapped window, which all give similar competitive results under the same architecture. Our study reveals that the \textbf{macro architecture} of Swin model families (i.e., interleaved intra window \& cross window communications), other than specific aggregation layers or specific means of cross window communication, may be more responsible for its strong performance and is the real challenger to CNN's dense sliding window paradigm.

Abstract (translated)

URL

https://arxiv.org/abs/2107.02174

PDF

https://arxiv.org/pdf/2107.02174.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot