Paper Reading AI Learner

Quality Metrics for Transparent Machine Learning With and Without Humans In the Loop Are Not Correlated

2021-07-01 12:30:51
Felix Biessmann, Dionysius Refiano

Abstract

The field explainable artificial intelligence (XAI) has brought about an arsenal of methods to render Machine Learning (ML) predictions more interpretable. But how useful explanations provided by transparent ML methods are for humans remains difficult to assess. Here we investigate the quality of interpretable computer vision algorithms using techniques from psychophysics. In crowdsourced annotation tasks we study the impact of different interpretability approaches on annotation accuracy and task time. We compare these quality metrics with classical XAI, automated quality metrics. Our results demonstrate that psychophysical experiments allow for robust quality assessment of transparency in machine learning. Interestingly the quality metrics computed without humans in the loop did not provide a consistent ranking of interpretability methods nor were they representative for how useful an explanation was for humans. These findings highlight the potential of methods from classical psychophysics for modern machine learning applications. We hope that our results provide convincing arguments for evaluating interpretability in its natural habitat, human-ML interaction, if the goal is to obtain an authentic assessment of interpretability.

Abstract (translated)

URL

https://arxiv.org/abs/2107.02033

PDF

https://arxiv.org/pdf/2107.02033.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot