Paper Reading AI Learner

Understanding the Security of Deepfake Detection

2021-07-05 14:18:21
Xiaoyu Cao, Neil Zhenqiang Gong

Abstract

Deepfakes pose growing challenges to the trust of information on the Internet. Therefore,detecting deepfakes has attracted increasing attentions from both academia and industry. State-of-the-art deepfake detection methods consist of two key components, i.e., face extractor and face classifier, which extract the face region in an image and classify it to be real/fake, respectively. Existing studies mainly focused on improving the detection performance in non-adversarial settings, leaving security of deepfake detection in adversarial settings largely unexplored. In this work, we aim to bridge the gap. In particular, we perform a systematic measurement study to understand the security of the state-of-the-art deepfake detection methods in adversarial settings. We use two large-scale public deepfakes data sources including FaceForensics++ and Facebook Deepfake Detection Challenge, where the deepfakes are fake face images; and we train state-of-the-art deepfake detection methods. These detection methods can achieve 0.94--0.99 accuracies in non-adversarial settings on these datasets. However, our measurement results uncover multiple security limitations of the deepfake detection methods in adversarial settings. First, we find that an attacker can evade a face extractor, i.e., the face extractor fails to extract the correct face regions, via adding small Gaussian noise to its deepfake images. Second, we find that a face classifier trained using deepfakes generated by one method cannot detect deepfakes generated by another method, i.e., an attacker can evade detection via generating deepfakes using a new method. Third, we find that an attacker can leverage backdoor attacks developed by the adversarial machine learning community to evade a face classifier. Our results highlight that deepfake detection should consider the adversarial nature of the problem.

Abstract (translated)

URL

https://arxiv.org/abs/2107.02045

PDF

https://arxiv.org/pdf/2107.02045.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot