Paper Reading AI Learner

Multi-Level Graph Contrastive Learning

2021-07-06 14:24:43
Pengpeng Shao, Tong Liu, Dawei Zhang, Jianhua Tao, Feihu Che, Guohua Yang


Graph representation learning has attracted a surge of interest recently, whose target at learning discriminant embedding for each node in the graph. Most of these representation methods focus on supervised learning and heavily depend on label information. However, annotating graphs are expensive to obtain in the real world, especially in specialized domains (i.e. biology), as it needs the annotator to have the domain knowledge to label the graph. To approach this problem, self-supervised learning provides a feasible solution for graph representation learning. In this paper, we propose a Multi-Level Graph Contrastive Learning (MLGCL) framework for learning robust representation of graph data by contrasting space views of graphs. Specifically, we introduce a novel contrastive view - topological and feature space views. The original graph is first-order approximation structure and contains uncertainty or error, while the $k$NN graph generated by encoding features preserves high-order proximity. Thus $k$NN graph generated by encoding features not only provide a complementary view, but is more suitable to GNN encoder to extract discriminant representation. Furthermore, we develop a multi-level contrastive mode to preserve the local similarity and semantic similarity of graph-structured data simultaneously. Extensive experiments indicate MLGCL achieves promising results compared with the existing state-of-the-art graph representation learning methods on seven datasets.

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot