Paper Reading AI Learner

Attention-based Adversarial Appearance Learning of Augmented Pedestrians

2021-07-06 15:27:00
Kevin Strauss, Artem Savkin, Federico Tombari

Abstract

Synthetic data became already an essential component of machine learning-based perception in the field of autonomous driving. Yet it still cannot replace real data completely due to the sim2real domain shift. In this work, we propose a method that leverages the advantages of the augmentation process and adversarial training to synthesize realistic data for the pedestrian recognition task. Our approach utilizes an attention mechanism driven by an adversarial loss to learn domain discrepancies and improve sim2real adaptation. Our experiments confirm that the proposed adaptation method is robust to such discrepancies and reveals both visual realism and semantic consistency. Furthermore, we evaluate our data generation pipeline on the task of pedestrian recognition and demonstrate that generated data resemble properties of the real domain.

Abstract (translated)

URL

https://arxiv.org/abs/2107.02673

PDF

https://arxiv.org/pdf/2107.02673.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot