Paper Reading AI Learner

A Multi-Objective Approach for Sustainable Generative Audio Models

2021-07-06 13:52:27
Constance Douwes, Philippe Esling, Jean-Pierre Briot

Abstract

In recent years, the deep learning community has largely focused on the accuracy of deep generative models, resulting in impressive improvements in several research fields. However, this scientific race for quality comes at a tremendous computational cost, which incurs vast energy consumption and greenhouse gas emissions. If the current exponential growth of computational consumption persists, Artificial Intelligence (AI) will sadly become a considerable contributor to global warming. At the heart of this problem are the measures that we use as a scientific community to evaluate our work. Currently, researchers in the field of AI judge scientific works mostly based on the improvement in accuracy, log-likelihood, reconstruction or opinion scores, all of which entirely obliterates the actual computational cost of generative models. In this paper, we introduce the idea of relying on a multi-objective measure based on Pareto optimality, which simultaneously integrates the models accuracy, as well as the environmental impact of their training. By applying this measure on the current state-of-the-art in generative audio models, we show that this measure drastically changes the perceived significance of the results in the field, encouraging optimal training techniques and resource allocation. We hope that this type of measure will be widely adopted, in order to help the community to better evaluate the significance of their work, while bringing computational cost -- and in fine carbon emissions -- in the spotlight of AI research.

Abstract (translated)

URL

https://arxiv.org/abs/2107.02621

PDF

https://arxiv.org/pdf/2107.02621.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot