Paper Reading AI Learner

Learning Invariant Representation with Consistency and Diversity for Semi-supervised Source Hypothesis Transfer

2021-07-07 04:14:24
Xiaodong Wang, Junbao Zhuo, Shuhao Cui, Shuhui Wang

Abstract

Semi-supervised domain adaptation (SSDA) aims to solve tasks in target domain by utilizing transferable information learned from the available source domain and a few labeled target data. However, source data is not always accessible in practical scenarios, which restricts the application of SSDA in real world circumstances. In this paper, we propose a novel task named Semi-supervised Source Hypothesis Transfer (SSHT), which performs domain adaptation based on source trained model, to generalize well in target domain with a few supervisions. In SSHT, we are facing two challenges: (1) The insufficient labeled target data may result in target features near the decision boundary, with the increased risk of mis-classification; (2) The data are usually imbalanced in source domain, so the model trained with these data is biased. The biased model is prone to categorize samples of minority categories into majority ones, resulting in low prediction diversity. To tackle the above issues, we propose Consistency and Diversity Learning (CDL), a simple but effective framework for SSHT by facilitating prediction consistency between two randomly augmented unlabeled data and maintaining the prediction diversity when adapting model to target domain. Encouraging consistency regularization brings difficulty to memorize the few labeled target data and thus enhances the generalization ability of the learned model. We further integrate Batch Nuclear-norm Maximization into our method to enhance the discriminability and diversity. Experimental results show that our method outperforms existing SSDA methods and unsupervised model adaptation methods on DomainNet, Office-Home and Office-31 datasets. The code is available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2107.03008

PDF

https://arxiv.org/pdf/2107.03008.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot