Paper Reading AI Learner

Comparing ML based Segmentation Models on Jet Fire Radiation Zone

2021-07-07 19:52:52
Carmina Pérez-Guerrero, Adriana Palacios, Gilberto Ochoa-Ruiz, Christian Mata, Miguel Gonzalez-Mendoza, Luis Eduardo Falcón-Morales

Abstract

Risk assessment is relevant in any workplace, however there is a degree of unpredictability when dealing with flammable or hazardous materials so that detection of fire accidents by itself may not be enough. An example of this is the impingement of jet fires, where the heat fluxes of the flame could reach nearby equipment and dramatically increase the probability of a domino effect with catastrophic results. Because of this, the characterization of such fire accidents is important from a risk management point of view. One such characterization would be the segmentation of different radiation zones within the flame, so this paper presents an exploratory research regarding several traditional computer vision and Deep Learning segmentation approaches to solve this specific problem. A data set of propane jet fires is used to train and evaluate the different approaches and given the difference in the distribution of the zones and background of the images, different loss functions, that seek to alleviate data imbalance, are also explored. Additionally, different metrics are correlated to a manual ranking performed by experts to make an evaluation that closely resembles the expert's criteria. The Hausdorff Distance and Adjsted Random Index were the metrics with the highest correlation and the best results were obtained from the UNet architecture with a Weighted Cross-Entropy Loss. These results can be used in future research to extract more geometric information from the segmentation masks or could even be implemented on other types of fire accidents.

Abstract (translated)

URL

https://arxiv.org/abs/2107.03461

PDF

https://arxiv.org/pdf/2107.03461.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot