Paper Reading AI Learner

Crowd Counting via Perspective-Guided Fractional-Dilation Convolution

2021-07-08 07:57:00
Zhaoyi Yan, Ruimao Zhang, Hongzhi Zhang, Qingfu Zhang, Wangmeng Zuo

Abstract

Crowd counting is critical for numerous video surveillance scenarios. One of the main issues in this task is how to handle the dramatic scale variations of pedestrians caused by the perspective effect. To address this issue, this paper proposes a novel convolution neural network-based crowd counting method, termed Perspective-guided Fractional-Dilation Network (PFDNet). By modeling the continuous scale variations, the proposed PFDNet is able to select the proper fractional dilation kernels for adapting to different spatial locations. It significantly improves the flexibility of the state-of-the-arts that only consider the discrete representative scales. In addition, by avoiding the multi-scale or multi-column architecture that used in other methods, it is computationally more efficient. In practice, the proposed PFDNet is constructed by stacking multiple Perspective-guided Fractional-Dilation Convolutions (PFC) on a VGG16-BN backbone. By introducing a novel generalized dilation convolution operation, the PFC can handle fractional dilation ratios in the spatial domain under the guidance of perspective annotations, achieving continuous scales modeling of pedestrians. To deal with the problem of unavailable perspective information in some cases, we further introduce an effective perspective estimation branch to the proposed PFDNet, which can be trained in either supervised or weakly-supervised setting once the branch has been pre-trained. Extensive experiments show that the proposed PFDNet outperforms state-of-the-art methods on ShanghaiTech A, ShanghaiTech B, WorldExpo'10, UCF-QNRF, UCF_CC_50 and TRANCOS dataset, achieving MAE 53.8, 6.5, 6.8, 84.3, 205.8, and 3.06 respectively.

Abstract (translated)

URL

https://arxiv.org/abs/2107.03665

PDF

https://arxiv.org/pdf/2107.03665.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot