Paper Reading AI Learner

CamTuner: Reinforcement-Learning based System for Camera Parameter Tuning to enhance Analytics

2021-07-08 16:43:02
Sibendu Paul, Kunal Rao, Giuseppe Coviello, Murugan Sankaradas, Oliver Po, Y. Charlie Hu, Srimat T. Chakradhar

Abstract

Complex sensors like video cameras include tens of configurable parameters, which can be set by end-users to customize the sensors to specific application scenarios. Although parameter settings significantly affect the quality of the sensor output and the accuracy of insights derived from sensor data, most end-users use a fixed parameter setting because they lack the skill or understanding to appropriately configure these parameters. We propose CamTuner, which is a system to automatically, and dynamically adapt the complex sensor to changing environments. CamTuner includes two key components. First, a bespoke analytics quality estimator, which is a deep-learning model to automatically and continuously estimate the quality of insights from an analytics unit as the environment around a sensor change. Second, a reinforcement learning (RL) module, which reacts to the changes in quality, and automatically adjusts the camera parameters to enhance the accuracy of insights. We improve the training time of the RL module by an order of magnitude by designing virtual models to mimic essential behavior of the camera: we design virtual knobs that can be set to different values to mimic the effects of assigning different values to the camera's configurable parameters, and we design a virtual camera model that mimics the output from a video camera at different times of the day. These virtual models significantly accelerate training because (a) frame rates from a real camera are limited to 25-30 fps while the virtual models enable processing at 300 fps, (b) we do not have to wait until the real camera sees different environments, which could take weeks or months, and (c) virtual knobs can be updated instantly, while it can take 200-500 ms to change the camera parameter settings. Our dynamic tuning approach results in up to 12% improvement in the accuracy of insights from several video analytics tasks.

Abstract (translated)

URL

https://arxiv.org/abs/2107.03964

PDF

https://arxiv.org/pdf/2107.03964.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot