Paper Reading AI Learner

Hack The Box: Fooling Deep Learning Abstraction-Based Monitors

2021-07-10 05:06:04
Sara Hajj Ibrahim, Mohamed Nassar

Abstract

Deep learning is a type of machine learning that adapts a deep hierarchy of concepts. Deep learning classifiers link the most basic version of concepts at the input layer to the most abstract version of concepts at the output layer, also known as a class or label. However, once trained over a finite set of classes, a deep learning model does not have the power to say that a given input does not belong to any of the classes and simply cannot be linked. Correctly invalidating the prediction of unrelated classes is a challenging problem that has been tackled in many ways in the literature. Novelty detection gives deep learning the ability to output "do not know" for novel/unseen classes. Still, no attention has been given to the security aspects of novelty detection. In this paper, we consider the case study of abstraction-based novelty detection and show that it is not robust against adversarial samples. Moreover, we show the feasibility of crafting adversarial samples that fool the deep learning classifier and bypass the novelty detection monitoring at the same time. In other words, these monitoring boxes are hackable. We demonstrate that novelty detection itself ends up as an attack surface.

Abstract (translated)

URL

https://arxiv.org/abs/2107.04764

PDF

https://arxiv.org/pdf/2107.04764.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot