Paper Reading AI Learner

Pessimistic Model-based Offline RL: PAC Bounds and Posterior Sampling under Partial Coverage

2021-07-13 16:30:01
Masatoshi Uehara, Wen Sun

Abstract

We study model-based offline Reinforcement Learning with general function approximation. We present an algorithm named Constrained Pessimistic Policy Optimization (CPPO) which leverages a general function class and uses a constraint to encode pessimism. Under the assumption that the ground truth model belongs to our function class, CPPO can learn with the offline data only providing partial coverage, i.e., it can learn a policy that completes against any policy that is covered by the offline data, in polynomial sample complexity with respect to the statistical complexity of the function class. We then demonstrate that this algorithmic framework can be applied to many specialized Markov Decision Processes where the additional structural assumptions can further refine the concept of partial coverage. One notable example is low-rank MDP with representation learning where the partial coverage is defined using the concept of relative condition number measured by the underlying unknown ground truth feature representation. Finally, we introduce and study the Bayesian setting in offline RL. The key benefit of Bayesian offline RL is that algorithmically, we do not need to explicitly construct pessimism or reward penalty which could be hard beyond models with linear structures. We present a posterior sampling-based incremental policy optimization algorithm (PS-PO) which proceeds by iteratively sampling a model from the posterior distribution and performing one-step incremental policy optimization inside the sampled model. Theoretically, in expectation with respect to the prior distribution, PS-PO can learn a near optimal policy under partial coverage with polynomial sample complexity.

Abstract (translated)

URL

https://arxiv.org/abs/2107.06226

PDF

https://arxiv.org/pdf/2107.06226.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot