Paper Reading AI Learner

A Note on Learning Rare Events in Molecular Dynamics using LSTM and Transformer

2021-07-14 09:26:36
Wenqi Zeng, Siqin Cao, Xuhui Huang, Yuan Yao

Abstract

Recurrent neural networks for language models like long short-term memory (LSTM) have been utilized as a tool for modeling and predicting long term dynamics of complex stochastic molecular systems. Recently successful examples on learning slow dynamics by LSTM are given with simulation data of low dimensional reaction coordinate. However, in this report we show that the following three key factors significantly affect the performance of language model learning, namely dimensionality of reaction coordinates, temporal resolution and state partition. When applying recurrent neural networks to molecular dynamics simulation trajectories of high dimensionality, we find that rare events corresponding to the slow dynamics might be obscured by other faster dynamics of the system, and cannot be efficiently learned. Under such conditions, we find that coarse graining the conformational space into metastable states and removing recrossing events when estimating transition probabilities between states could greatly help improve the accuracy of slow dynamics learning in molecular dynamics. Moreover, we also explore other models like Transformer, which do not show superior performance than LSTM in overcoming these issues. Therefore, to learn rare events of slow molecular dynamics by LSTM and Transformer, it is critical to choose proper temporal resolution (i.e., saving intervals of MD simulation trajectories) and state partition in high resolution data, since deep neural network models might not automatically disentangle slow dynamics from fast dynamics when both are present in data influencing each other.

Abstract (translated)

URL

https://arxiv.org/abs/2107.06573

PDF

https://arxiv.org/pdf/2107.06573.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot