Paper Reading AI Learner

Using BERT Encoding to Tackle the Mad-lib Attack in SMS Spam Detection

2021-07-13 21:17:57
Sergio Rojas-Galeano

Abstract

One of the stratagems used to deceive spam filters is to substitute vocables with synonyms or similar words that turn the message unrecognisable by the detection algorithms. In this paper we investigate whether the recent development of language models sensitive to the semantics and context of words, such as Google's BERT, may be useful to overcome this adversarial attack (called "Mad-lib" as per the word substitution game). Using a dataset of 5572 SMS spam messages, we first established a baseline of detection performance using widely known document representation models (BoW and TFIDF) and the novel BERT model, coupled with a variety of classification algorithms (Decision Tree, kNN, SVM, Logistic Regression, Naive Bayes, Multilayer Perceptron). Then, we built a thesaurus of the vocabulary contained in these messages, and set up a Mad-lib attack experiment in which we modified each message of a held out subset of data (not used in the baseline experiment) with different rates of substitution of original words with synonyms from the thesaurus. Lastly, we evaluated the detection performance of the three representation models (BoW, TFIDF and BERT) coupled with the best classifier from the baseline experiment (SVM). We found that the classic models achieved a 94% Balanced Accuracy (BA) in the original dataset, whereas the BERT model obtained 96%. On the other hand, the Mad-lib attack experiment showed that BERT encodings manage to maintain a similar BA performance of 96% with an average substitution rate of 1.82 words per message, and 95% with 3.34 words substituted per message. In contrast, the BA performance of the BoW and TFIDF encoders dropped to chance. These results hint at the potential advantage of BERT models to combat these type of ingenious attacks, offsetting to some extent for the inappropriate use of semantic relationships in language.

Abstract (translated)

URL

https://arxiv.org/abs/2107.06400

PDF

https://arxiv.org/pdf/2107.06400.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot