Paper Reading AI Learner

Auditing for Diversity using Representative Examples

2021-07-15 15:21:17
Vijay Keswani, L. Elisa Celis

Abstract

Assessing the diversity of a dataset of information associated with people is crucial before using such data for downstream applications. For a given dataset, this often involves computing the imbalance or disparity in the empirical marginal distribution of a protected attribute (e.g. gender, dialect, etc.). However, real-world datasets, such as images from Google Search or collections of Twitter posts, often do not have protected attributes labeled. Consequently, to derive disparity measures for such datasets, the elements need to hand-labeled or crowd-annotated, which are expensive processes. We propose a cost-effective approach to approximate the disparity of a given unlabeled dataset, with respect to a protected attribute, using a control set of labeled representative examples. Our proposed algorithm uses the pairwise similarity between elements in the dataset and elements in the control set to effectively bootstrap an approximation to the disparity of the dataset. Importantly, we show that using a control set whose size is much smaller than the size of the dataset is sufficient to achieve a small approximation error. Further, based on our theoretical framework, we also provide an algorithm to construct adaptive control sets that achieve smaller approximation errors than randomly chosen control sets. Simulations on two image datasets and one Twitter dataset demonstrate the efficacy of our approach (using random and adaptive control sets) in auditing the diversity of a wide variety of datasets.

Abstract (translated)

URL

https://arxiv.org/abs/2107.07393

PDF

https://arxiv.org/pdf/2107.07393.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot