Paper Reading AI Learner

Confidence Conditioned Knowledge Distillation

2021-07-06 00:33:25
Sourav Mishra, Suresh Sundaram

Abstract

In this paper, a novel confidence conditioned knowledge distillation (CCKD) scheme for transferring the knowledge from a teacher model to a student model is proposed. Existing state-of-the-art methods employ fixed loss functions for this purpose and ignore the different levels of information that need to be transferred for different samples. In addition to that, these methods are also inefficient in terms of data usage. CCKD addresses these issues by leveraging the confidence assigned by the teacher model to the correct class to devise sample-specific loss functions (CCKD-L formulation) and targets (CCKD-T formulation). Further, CCKD improves the data efficiency by employing self-regulation to stop those samples from participating in the distillation process on which the student model learns faster. Empirical evaluations on several benchmark datasets show that CCKD methods achieve at least as much generalization performance levels as other state-of-the-art methods while being data efficient in the process. Student models trained through CCKD methods do not retain most of the misclassifications commited by the teacher model on the training set. Distillation through CCKD methods improves the resilience of the student models against adversarial attacks compared to the conventional KD method. Experiments show at least 3% increase in performance against adversarial attacks for the MNIST and the Fashion MNIST datasets, and at least 6% increase for the CIFAR10 dataset.

Abstract (translated)

URL

https://arxiv.org/abs/2107.06993

PDF

https://arxiv.org/pdf/2107.06993.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot