Paper Reading AI Learner

Memory-Aware Fusing and Tiling of Neural Networks for Accelerated Edge Inference

2021-07-14 19:45:49
Jackson Farley, Andreas Gerstlauer

Abstract

A rising research challenge is running costly machine learning (ML) networks locally on resource-constrained edge devices. ML networks with large convolutional layers can easily exceed available memory, increasing latency due to excessive swapping. Previous memory reduction techniques such as pruning and quantization reduce model accuracy and often require retraining. Alternatively, distributed methods partition the convolutions into equivalent smaller sub-computations, but the implementations introduce communication costs and require a network of devices. However, a distributed partitioning approach can also be used to run in a reduced memory footprint on a single device by subdividing the network into smaller operations. This report extends prior work on distributed partitioning using tiling and fusing of convolutional layers into a memory-aware execution on a single device. Our approach extends prior fusing strategies to allow for two groups of convolutional layers that are fused and tiled independently. This approach reduces overhead via data reuse, and reduces the memory footprint further. We also propose a memory usage predictor coupled with a search algorithm to provide fusing and tiling configurations for an arbitrary set of convolutional layers. When applied to the YOLOv2 object detection network, results show that our approach can run in less than half the memory, and with a speedup of up to 2.78 under severe memory constraints. Additionally, our algorithm will return a configuration with a latency that is within 6% of the best latency measured in a manual search.

Abstract (translated)

URL

https://arxiv.org/abs/2107.06960

PDF

https://arxiv.org/pdf/2107.06960.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot