Paper Reading AI Learner

Declarative Machine Learning Systems

2021-07-16 23:57:57
Piero Molino, Christopher Ré

Abstract

In the last years machine learning (ML) has moved from a academic endeavor to a pervasive technology adopted in almost every aspect of computing. ML-powered products are now embedded in our digital lives: from recommendations of what to watch, to divining our search intent, to powering virtual assistants in consumer and enterprise settings. Recent successes in applying ML in natural sciences revealed that ML can be used to tackle some of the hardest real-world problems humanity faces today. For these reasons ML has become central in the strategy of tech companies and has gathered even more attention from academia than ever before. Despite these successes, what we have witnessed so far is just the beginning. Right now the people training and using ML models are expert developers working within large organizations, but we believe the next wave of ML systems will allow a larger amount of people, potentially without coding skills, to perform the same tasks. These new ML systems will not require users to fully understand all the details of how models are trained and utilized for obtaining predictions. Declarative interfaces are well suited for this goal, by hiding complexity and favouring separation of interests, and can lead to increased productivity. We worked on such abstract interfaces by developing two declarative ML systems, Overton and Ludwig, that require users to declare only their data schema (names and types of inputs) and tasks rather then writing low level ML code. In this article we will describe how ML systems are currently structured, highlight important factors for their success and adoption, what are the issues current ML systems are facing and how the systems we developed addressed them. Finally we will talk about learnings from the development of ML systems throughout the years and how we believe the next generation of ML systems will look like.

Abstract (translated)

URL

https://arxiv.org/abs/2107.08148

PDF

https://arxiv.org/pdf/2107.08148.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot