Paper Reading AI Learner

Automatic Fairness Testing of Neural Classifiers through Adversarial Sampling

2021-07-17 03:47:08
Peixin Zhang, Jingyi Wang, Jun Sun, Xinyu Wang, Guoliang Dong, Xingen Wang, Ting Dai, Jin Song Dong

Abstract

Although deep learning has demonstrated astonishing performance in many applications, there are still concerns on their dependability. One desirable property of deep learning applications with societal impact is fairness (i.e., non-discrimination). Unfortunately, discrimination might be intrinsically embedded into the models due to discrimination in the training data. As a countermeasure, fairness testing systemically identifies discriminative samples, which can be used to retrain the model and improve its fairness. Existing fairness testing approaches however have two major limitations. First, they only work well on traditional machine learning models and have poor performance (e.g., effectiveness and efficiency) on deep learning models. Second, they only work on simple tabular data and are not applicable for domains such as text. In this work, we bridge the gap by proposing a scalable and effective approach for systematically searching for discriminative samples while extending fairness testing to address a challenging domain, i.e., text classification. Compared with state-of-the-art methods, our approach only employs lightweight procedures like gradient computation and clustering, which makes it significantly more scalable. Experimental results show that on average, our approach explores the search space more effectively (9.62 and 2.38 times more than the state-of-art methods respectively on tabular and text datasets) and generates much more individual discriminatory instances (24.95 and 2.68 times) within reasonable time. The retrained models reduce discrimination by 57.2% and 60.2% respectively on average.

Abstract (translated)

URL

https://arxiv.org/abs/2107.08176

PDF

https://arxiv.org/pdf/2107.08176.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot