Paper Reading AI Learner

Multimodal Reward Shaping for Efficient Exploration in Reinforcement Learning

2021-07-19 14:04:32
Mingqi Yuan, Mon-on Pun, Yi Chen, Dong Wang, Haojun Li

Abstract

Maintaining long-term exploration ability remains one of the challenges of deep reinforcement learning (DRL). In practice, the reward shaping-based approaches are leveraged to provide intrinsic rewards for the agent to incentivize motivation. However, most existing IRS modules rely on attendant models or additional memory to record and analyze learning procedures, which leads to high computational complexity and low robustness. Moreover, they overemphasize the influence of a single state on exploration, which cannot evaluate the exploration performance from a global perspective. To tackle the problem, state entropy-based methods are proposed to encourage the agent to visit the state space more equitably. However, the estimation error and sample complexity are prohibitive when handling environments with high-dimensional observation. In this paper, we introduce a novel metric entitled Jain's fairness index (JFI) to replace the entropy regularizer, which requires no additional models or memory. In particular, JFI overcomes the vanishing intrinsic rewards problem and can be generalized into arbitrary tasks. Furthermore, we use a variational auto-encoder (VAE) model to capture the life-long novelty of states. Finally, the global JFI score and local state novelty are combined to form a multimodal intrinsic reward, controlling the exploration extent more precisely. Finally, extensive simulation results demonstrate that our multimodal reward shaping (MMRS) method can achieve higher performance in contrast to other benchmark schemes.

Abstract (translated)

URL

https://arxiv.org/abs/2107.08888

PDF

https://arxiv.org/pdf/2107.08888.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot