Paper Reading AI Learner

Philosophical Specification of Empathetic Ethical Artificial Intelligence

2021-07-22 14:37:46
Michael Timothy Bennett, Yoshihiro Maruyama

Abstract

In order to construct an ethical artificial intelligence (AI) two complex problems must be overcome. Firstly, humans do not consistently agree on what is or is not ethical. Second, contemporary AI and machine learning methods tend to be blunt instruments which either search for solutions within the bounds of predefined rules, or mimic behaviour. An ethical AI must be capable of inferring unspoken rules, interpreting nuance and context, possess and be able to infer intent, and explain not just its actions but its intent. Using enactivism, semiotics, perceptual symbol systems and symbol emergence, we specify an agent that learns not just arbitrary relations between signs but their meaning in terms of the perceptual states of its sensorimotor system. Subsequently it can learn what is meant by a sentence and infer the intent of others in terms of its own experiences. It has malleable intent because the meaning of symbols changes as it learns, and its intent is represented symbolically as a goal. As such it may learn a concept of what is most likely to be considered ethical by the majority within a population of humans, which may then be used as a goal. The meaning of abstract symbols is expressed using perceptual symbols of raw sensorimotor stimuli as the weakest (consistent with Ockham's Razor) necessary and sufficient concept, an intensional definition learned from an ostensive definition, from which the extensional definition or category of all ethical decisions may be obtained. Because these abstract symbols are the same for both situation and response, the same symbol is used when either performing or observing an action. This is akin to mirror neurons in the human brain. Mirror symbols may allow the agent to empathise, because its own experiences are associated with the symbol, which is also associated with the observation of another agent experiencing something that symbol represents.

Abstract (translated)

URL

https://arxiv.org/abs/2107.10715

PDF

https://arxiv.org/pdf/2107.10715.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot