Paper Reading AI Learner

Spinning Sequence-to-Sequence Models with Meta-Backdoors

2021-07-22 03:41:52
Eugene Bagdasaryan, Vitaly Shmatikov

Abstract

We investigate a new threat to neural sequence-to-sequence (seq2seq) models: training-time attacks that cause models to "spin" their output and support a certain sentiment when the input contains adversary-chosen trigger words. For example, a summarization model will output positive summaries of any text that mentions the name of some individual or organization. We introduce the concept of a "meta-backdoor" to explain model-spinning attacks. These attacks produce models whose output is valid and preserves context, yet also satisfies a meta-task chosen by the adversary (e.g., positive sentiment). Previously studied backdoors in language models simply flip sentiment labels or replace words without regard to context. Their outputs are incorrect on inputs with the trigger. Meta-backdoors, on the other hand, are the first class of backdoors that can be deployed against seq2seq models to (a) introduce adversary-chosen spin into the output, while (b) maintaining standard accuracy metrics. To demonstrate feasibility of model spinning, we develop a new backdooring technique. It stacks the adversarial meta-task (e.g., sentiment analysis) onto a seq2seq model, backpropagates the desired meta-task output (e.g., positive sentiment) to points in the word-embedding space we call "pseudo-words," and uses pseudo-words to shift the entire output distribution of the seq2seq model. Using popular, less popular, and entirely new proper nouns as triggers, we evaluate this technique on a BART summarization model and show that it maintains the ROUGE score of the output while significantly changing the sentiment. We explain why model spinning can be a dangerous technique in AI-powered disinformation and discuss how to mitigate these attacks.

Abstract (translated)

URL

https://arxiv.org/abs/2107.10443

PDF

https://arxiv.org/pdf/2107.10443.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot