Paper Reading AI Learner

Cardiac CT segmentation based on distance regularized level set

2021-07-23 10:13:31
Xinyang Wu


Before analy z ing the CT image, it is very important to segment the heart image, and the left ve ntricular (LV) inner and outer membrane segmentation is one of the most important contents. However, manual segmentation is tedious and time consuming. In order to facilitate doctors to focus on high tech tasks such as disease analysis and diagnosis, it is crucial to develop a fast and accurate segmentation method [1]. In view of this phenomenon, this paper uses distance regularized level set (DRL SE) to explore the segmentation effect of epicardium and endocardium 2 ]], which includes a distance regula riz ed t erm and an external energy term. Finally, five CT images are used to verify the proposed method, and image quality evaluation indexes such as dice score and Hausdorff distance are used to evaluate the segmentation effect. The results showed that the me tho d could separate the inner and outer membrane very well (endocardium dice = 0.9253, Hausdorff = 7.8740; epicardium Hausdorff = 0.9687, Hausdorff = 6 .

Abstract (translated)



3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot