Paper Reading AI Learner

Reinforced Imitation Learning by Free Energy Principle

2021-07-25 14:19:29
Ryoya Ogishima, Izumi Karino, Yasuo Kuniyoshi

Abstract

Reinforcement Learning (RL) requires a large amount of exploration especially in sparse-reward settings. Imitation Learning (IL) can learn from expert demonstrations without exploration, but it never exceeds the expert's performance and is also vulnerable to distributional shift between demonstration and execution. In this paper, we radically unify RL and IL based on Free Energy Principle (FEP). FEP is a unified Bayesian theory of the brain that explains perception, action and model learning by a common fundamental principle. We present a theoretical extension of FEP and derive an algorithm in which an agent learns the world model that internalizes expert demonstrations and at the same time uses the model to infer the current and future states and actions that maximize rewards. The algorithm thus reduces exploration costs by partially imitating experts as well as maximizing its return in a seamless way, resulting in a higher performance than the suboptimal expert. Our experimental results show that this approach is promising in visual control tasks especially in sparse-reward environments.

Abstract (translated)

URL

https://arxiv.org/abs/2107.11811

PDF

https://arxiv.org/pdf/2107.11811.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot