Paper Reading AI Learner

ContextNet: A Click-Through Rate Prediction Framework Using Contextual information to Refine Feature Embedding

2021-07-26 08:29:40
Zhiqiang Wang, Qingyun She, PengTao Zhang, Junlin Zhang

Abstract

Click-through rate (CTR) estimation is a fundamental task in personalized advertising and recommender systems and it's important for ranking models to effectively capture complex high-order features.Inspired by the success of ELMO and Bert in NLP field, which dynamically refine word embedding according to the context sentence information where the word appears, we think it's also important to dynamically refine each feature's embedding layer by layer according to the context information contained in input instance in CTR estimation tasks. We can effectively capture the useful feature interactions for each feature in this way. In this paper, We propose a novel CTR Framework named ContextNet that implicitly models high-order feature interactions by dynamically refining each feature's embedding according to the input context. Specifically, ContextNet consists of two key components: contextual embedding module and ContextNet block. Contextual embedding module aggregates contextual information for each feature from input instance and ContextNet block maintains each feature's embedding layer by layer and dynamically refines its representation by merging contextual high-order interaction information into feature embedding. To make the framework specific, we also propose two models(ContextNet-PFFN and ContextNet-SFFN) under this framework by introducing linear contextual embedding network and two non-linear mapping sub-network in ContextNet block. We conduct extensive experiments on four real-world datasets and the experiment results demonstrate that our proposed ContextNet-PFFN and ContextNet-SFFN model outperform state-of-the-art models such as DeepFM and xDeepFM significantly.

Abstract (translated)

URL

https://arxiv.org/abs/2107.12025

PDF

https://arxiv.org/pdf/2107.12025.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot