Paper Reading AI Learner

EGGS: Eigen-Gap Guided Search Making Subspace Clustering Easy

2021-07-23 08:53:36
Jicong Fan, Yiheng Tu, Zhao Zhang, Mingbo Zhao

Abstract

The performance of spectral clustering heavily relies on the quality of affinity matrix. A variety of affinity-matrix-construction methods have been proposed but they have hyper-parameters to determine beforehand, which requires strong experience and lead to difficulty in real applications especially when the inter-cluster similarity is high or/and the dataset is large. On the other hand, we often have to determine to use a linear model or a nonlinear model, which still depends on experience. To solve these two problems, in this paper, we present an eigen-gap guided search method for subspace clustering. The main idea is to find the most reliable affinity matrix among a set of candidates constructed by linear and kernel regressions, where the reliability is quantified by the \textit{relative-eigen-gap} of graph Laplacian defined in this paper. We show, theoretically and numerically, that the Laplacian matrix with a larger relative-eigen-gap often yields a higher clustering accuracy and stability. Our method is able to automatically search the best model and hyper-parameters in a pre-defined space. The search space is very easy to determine and can be arbitrarily large, though a relatively compact search space can reduce the highly unnecessary computation. Our method has high flexibility and convenience in real applications, and also has low computational cost because the affinity matrix is not computed by iterative optimization. We extend the method to large-scale datasets such as MNIST, on which the time cost is less than 90s and the clustering accuracy is state-of-the-art. Extensive experiments of natural image clustering show that our method is more stable, accurate, and efficient than baseline methods.

Abstract (translated)

URL

https://arxiv.org/abs/2107.12183

PDF

https://arxiv.org/pdf/2107.12183.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot