Paper Reading AI Learner

Human-Level Reinforcement Learning through Theory-Based Modeling, Exploration, and Planning

2021-07-27 01:38:13
Pedro A. Tsividis, Joao Loula, Jake Burga, Nathan Foss, Andres Campero, Thomas Pouncy, Samuel J. Gershman, Joshua B. Tenenbaum

Abstract

Reinforcement learning (RL) studies how an agent comes to achieve reward in an environment through interactions over time. Recent advances in machine RL have surpassed human expertise at the world's oldest board games and many classic video games, but they require vast quantities of experience to learn successfully -- none of today's algorithms account for the human ability to learn so many different tasks, so quickly. Here we propose a new approach to this challenge based on a particularly strong form of model-based RL which we call Theory-Based Reinforcement Learning, because it uses human-like intuitive theories -- rich, abstract, causal models of physical objects, intentional agents, and their interactions -- to explore and model an environment, and plan effectively to achieve task goals. We instantiate the approach in a video game playing agent called EMPA (the Exploring, Modeling, and Planning Agent), which performs Bayesian inference to learn probabilistic generative models expressed as programs for a game-engine simulator, and runs internal simulations over these models to support efficient object-based, relational exploration and heuristic planning. EMPA closely matches human learning efficiency on a suite of 90 challenging Atari-style video games, learning new games in just minutes of game play and generalizing robustly to new game situations and new levels. The model also captures fine-grained structure in people's exploration trajectories and learning dynamics. Its design and behavior suggest a way forward for building more general human-like AI systems.

Abstract (translated)

URL

https://arxiv.org/abs/2107.12544

PDF

https://arxiv.org/pdf/2107.12544.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot